Check for updates

Blood 142 (2023) 2033-2034

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

654.MGUS, AMYLOIDOSIS AND OTHER NON-MYELOMA PLASMA CELL DYSCRASIAS: CLINICAL AND EPIDEMIOLOGICAL

Multicentric Hyaline-Vascular Castleman Disease: The Missing Link?

Maxime Beydon¹, Yannick Dieudonné², Veronique Meignin, MD³, Eléonore Kaphan, MD⁴, Louis Terriou, MD⁵, Jean Philippe Martellosio⁶, Jean-Francois Viallard, MDPhD⁷, Claire Ballot-Schmit⁸, Marie Emilie Dourthe, MD PhD⁹, Coralie Mallebranche, MD¹⁰, Deborah Meyran, MD¹¹, Lucas Maisonobe¹², Lionel Galicier¹³, Eric Oksenhendler¹³, David Boutboul, MDPhD¹⁴

¹Hôpital Saint-Louis, Paris, France

- ² Strasbourg University Hospital, Strasbourg, FRA
- ³Pathology, Hopital Saint-Louis, PARIS, FRA
- ⁴Saint-Louis Hospital, Paris, FRA
- ⁵CHU Lille, Université de Lille, Lille, France
- ⁶ Poitiers University Hospital, Poitiers, France
- ⁷ Service Médecine Interne, Haut-Leveque Hospital, Pessac, France
- ⁸Hopital Jean Minjoz, Besançon, France

⁹ Department of Pediatric Hematology, Robert Debré Hospital, AP-HP, Université Paris Cité, Paris, France., Paris, France ¹⁰ immuno-hemato-oncology Unit, Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, CHU Angers,

- Angers, FRA
- ¹¹ Hopital Robert Debré, Paris, France
- ¹²Hopital Bichat, Paris, France
- ¹³Service d'Immunopathologie Clinique, Saint Louis hospital, AP-HP, Paris, France
- ¹⁴ Service d'Immunopathologie Clinique, Saint Louis hospital, AP-HP, Paris, France

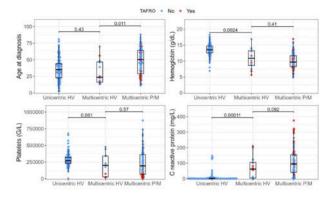
Introduction: Castleman disease (CD) is a rare lymphoproliferative disorder that encompasses distinct clinicopathological entities. Unicentric form of the disease (UCD) usually involves a single lymph node station, exhibits hyaline vascular (HV) pathological changes with follicular dendritic cell expansion, and may associate with specific and life-threatening complications including paraneoplastic pemphigus (PNP) and follicular dendritic cell sarcoma (FDCS). Plasma cell interfollicular infiltration is absent in the HV subtype as opposed to the Plasma-Cell (PC) or Mixed subtypes. PC subtype has been associated with inflammatory symptoms thought to be secondary to plasma cell infiltration and represents the majority of HHV8-negative "idiopathic" multicentric forms of the disease. Interestingly, patients with PC-UCD behave as PC-MCD, suggesting a stronger role of histology rather than Unicentric vs Multicentric phenotype in disease expression. We here studied the phenotype of HV-MCD, a rare subtype of CD characterized by hyaline-vascular pathological changes involving 2 or more lymph node stations.

Methods: Patients were screened through the French national reference center for CD between January 1994 and June 2023. Cases were followed from first symptoms to last follow-up visit. Comparators consisted of patients with HV-UCD and patients with PC/Mixed iMCD (P/M-iMCD). All cases and biopsies were reviewed by three expert clinicians and one expert pathologist. **Results:** Sixteen patients with a diagnosis of HHV8-negative HV-MCD were identified. All patients had supra- and infradiaphragmatic involvement. Four were excluded because of a subsequent diagnosis of POEMS, systemic lupus erythematosus, tuberculosis, or inborn error of immunity. The 12 remaining patients were considered as having HV-iMCD and compared to 101 patients with P/M-iMCD and 139 patients with HV-UCD. Characteristics and comparison between the 3 groups are depicted in **Table 1**.

When compared to HV-UCD, HV-iMCD displayed frequent systemic involvement with significantly higher ECOG, higher frequency of fever and splenomegaly, and higher levels of C-reactive protein, gammaglobulins, leukocytes and ferritinemia (**Figure 1**). Age at diagnosis was not different between HV-UCD and HV-iMCD. No cases of TAFRO syndrome were observed in HV-UCD whereas 4 cases were observed in HV-iMCD. All cases of PNP (n=12) and FDCS (n=3) were observed in the HV-UCD group.

POSTER ABSTRACTS

We observed a younger age at diagnosis in HV-iMCD compared to P/M-iMCD (median 24 [range 13-70] vs median 50 [range 11-88] years respectively, p = 0.01). We also noted a trend towards lower levels of C reactive protein and gammaglobulins as well a higher albumin level in HV-iMCD vs P/M-iMCD but these differences were not significant (**Figure 1 and Table 1**).


Treatments were similar between HV-iMCD and P/M-iMCD with prescription of steroids or anti-IL6R as first line therapy in 8/12 (67%) and 61/101 (60%) respectively. As expected, surgery was the first line therapy in 98/139 (72%) of HV-UCD patients. One patient with HV-iMCD and two with HV-UCD died (logrank p = 0.10), whereas 13 died in the P/M-iMCD group (logrank p = 0.8).

Conclusions: These data altogether indicate that HV-iMCD appears to be a distinct entity in CD landscape, sharing pathological aspects of HV-UCD and clinical/biological features of P/M iMCD. In line with this view, there seems to be no overlap between HV-UCD and HV-iMCD-related complications. The findings also suggest that nodal PC infiltration is not sufficient to explain the inflammatory pattern of iMCD.

Disclosures Meignin: EUSAPHARMA: Consultancy. **Terriou:** Alexion: Honoraria; Sobi: Honoraria; Eusapharma: Consultancy. **Viallard:** EUSAPHARMA: Consultancy. **Galicier:** EUSAPHARMA: Consultancy; AMGEN: Consultancy. **Oksenhendler:** EusaPharma: Consultancy; CSL Behring: Consultancy.

	HV-IMCD vs HV-UCD		HV-IMCD vs P/M-IMCD		
	HV-MCD, N = 12	HV-UCD, N = 139	p-value	PIM-IMCD, N = 101	p-value
Age at diagnosis	23.5 (16.2, 46.5)	35.0 (22.5, 44.0)	0.4	50.0 (29.0, 64.0)	0.011
Sex (Female)	6 / 12 (50%)	83 / 139 (60%)	0.6	28 / 101 (28%)	0.2
ECOG status			0.008		>0.9
0-1	3/6 (50%)	82 / 87 (94%)		22/52 (42%)	
2.4	3/6 (50%)	5 / 87 (5.7%)		30 / 52 (58%)	
PET SUVmax	4.5 (4.1, 8.4)	4.4 (3.6, 5.5)	0.3	5.8 (4.7, 8.1)	0.6
Fever	7 / 12 (58%)	6 / 139 (4.3%)	<0.001	67 / 101 (66%)	0.7
Splenomegaly	6 / 12 (50%)	1 / 139 (0.7%)	<0.001	38 / 101 (38%)	0.5
Pemphigus	0 / 12 (0%)	12 / 139 (8.6%)	0.6	101 / 101 (100%)	
Sarcoma	0/12(0%)	3 / 139 (2.1%)	>0.9	0 / 101 (0%)	>0.9
AIHA	0 / 12 (0%)	0 / 139 (0%)	>0.9	4 / 101 (4.0%)	>0.9
ITP	2/12(17%)	2/139 (1.4%)	0.032	19/101 (19%)	>0.9
Edema	5 / 12 (42%)	4 / 139 (2.9%)	<0.001	39 / 101 (39%)	>0.9
Polynouropathy	0 / 12 (0%)	2 / 139 (1.4%)	>0.9	7 / 101 (6.9%)	>0.9
Nephropathy	4/12 (33%)	1 / 139 (0.7%)	<0.001	36 / 101 (36%)	>0.9
TAFRO syndrome	4/12 (33%)	0 / 135 (0%)	<0.001	25 / 101 (25%)	>0.9
Leukocytes (/mm3)	8,800 (6,850, 10,800)	5,915 (4,915, 7,515)	<0.001	7,890 (5,723, 9,950)	0.2
Neutrophils (/mm3)	4,980 (4,523, 7,185)	3,800 (2,940, 4,960)	0.001	5,575 (3,813, 7,413)	0.5
Lymphocytes (/mm3)	1,680 (1,100, 1,810)	1,570 (990, 2,050)	0.7	1,370 (850, 1,850)	0.2
Hemoglobin (g/dL)	10.8 (8.6, 13.2)	13.5 (12.5, 14.7)	0.002	9.6 (8.2, 11.7)	0.4
Platelets (G/L)	199.5 (27,25, 341.5)	271 (230, 322)	0.061	194 (66.5, 361.5)	0.6
C reactive protein (mg/L)	62.(4.5, 105.8)	2.0 (1.0, 4.0)	<0.001	95 (42, 156)	0.092
Albumin (g/L)	40.0 (27.6, 42.2)	43.7 (40.5, 46.1)	0.003	29 (24, 34.3)	0.055
Gammaglobulins (g/L)	16.0 (11.8, 16.8)	11.1 (9.4, 13.1)	0.009	21 (13, 29)	0.13
IgG (g/L)	15.8 (13.1, 16.0)	10.5 (9.0, 12.4)	0.001	19.5 (12.5, 27.1)	0.2
IgA (g/L)	2.0 (1.1, 3.1)	1.8 (1.3, 2.6)	>0.9	3.6 (2.1, 5.3)	0,030
IgM (g/L)	0.8 (0.7, 1.9)	1.0 (0.8, 1.6)	0.6	0.9 (0.6, 1.6)	>0.9
Ferritin (ng/mL)	559 (522.0, 597.0)	60 (16.0, 156.0)	<0.001	468 (196, 1,047)	0.6

Figure 1. Age, hemoglobin, platelets and C-reactive protein levels at diagnosis according to CD subtype.

HV-MCD: hyaline-vasodari diogathic matitomitic Casternan disease, PM-MCD: plasmas/plomied diogathic matilcentric Casterna disease. HV-UCD: hyaline-vasodari uncentric casternan disease, EO-UCD: hyaline-vasoda

https://doi.org/10.1182/blood-2023-179819